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In the following sections, the equation numbers without the prefix, A, correspond to those
in the main article.

Appendix 1: Approximation for PCC(∞)

To obtain an approximation for PCC(∞), fix k (= 1, . . . , D) and consider the (D − 1) × 1

vector ~Yl,k with components Yl,k(k′) =
∑l

j=1 b
j
k,k′xj, for k

′ 6= k. Then, by the assumptions, the
mean of ~Yl,k, ~µl,k = E(~Yl,k), is a (D−1)×1 vector with components µl,k(k′) =

∑l
j=1 2θk,jb

j
k,k′ ,

and the Covariance of ~Yl,k, Σl,k = Cov(~Yl,k), is a (D−1)× (D−1) matrix with its (k′, k′′)-th
element, Cov(Yl,k(k

′), Yl,k(k
′′)) =

∑l
j=1 2θk,j(1− θk,j)bjk,k′b

j
k,k′′ for k 6= k′, k′′. Our aim is to

show that, for large l

~Yl,k ≈ N(~µl,k,Σl,k), (A.1)

where N denotes the (D − 1)-dimensional multivariate normal distribution. For each fixed
k = 1, 2, ..., D, in order to prove the assertion, ~Yl,k ≈ N(~µl,k,Σl,k) for large l, we will consider
any linear combination ~β ′ ~Yl,k (=

∑D
i=1,i 6=k βiYl,k(i)) and first show that

~β ′ ~Yl,k − ~β ′~µl,k√
~β ′Σl,k

~β
⇒ N(0, 1) as l→∞. (A.2)

To this end, write

~β ′ ~Yl,k =
D∑

i=1,i 6=k

βiYl,k(i) =
D∑

i=1,i 6=k

l∑
j=1

βixjb
j
k,i =

l∑
j=1

(
D∑

i=1,i 6=k

βib
j
k,i)xj.

For a fixed k = 1, . . . , D, set Zj = (
∑D

i=1,i 6=k βib
j
k,i)xj and note that |Zj| ≤ M for some

M > 0, because |xj| ≤ 2 and |bjk,i| ≤ log(99) since θk,j and θi,j ∈ (0.01, 0.5). Therefore,
by the assumptions in Section 2.1, {Zj} is a sequence of independent and bounded random
variables with E(Zj) = (

∑D
i=1,i 6=k βib

j
k,i)2θk,j and V ar(Zj) = (

∑D
i=1,i 6=k βib

j
k,i)

22θk,j(1 − θk,j),
when ~x ∈ Ck.

For any (D−1)×1 vector ~β 6= ~0, assume that
∑l

j=1

[∑D
k′=1,k′ 6=k βk′ log(

θk,j(1−θk′,j)
θk′,j(1−θk,j)

)

]2
→∞,

as l→∞. Then, by this assumption and since θk,j(1− θk,j) > 0.01× 0.5, we have

l∑
j=1

V ar(Zj) = 2
l∑

j=1

(
D∑

i=1,i 6=k

βib
j
k,i)

2θk,j(1− θk,j) > (0.01)
l∑

j=1

(
D∑

i=1,i 6=k

βib
j
k,i)

2 →∞,
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as l→∞. Therefore, the desired result in (A.2) follows from Example 27-4 (also see Problem
27-4) of Billingsley (1995). Hence, by the Cramér-Wold device (see Billingsley, 1995, Theorem
29.4), we have that, for large l

~Yl,k ≈ N(~µl,k,Σl,k),

This proves (A.1).

Note from equation (3) of the main article that Kk′,k′′ = −Kk′′,k′ and
∑t

k=sKk,(k+1) = Ks,t+1

for any s, t = 1, . . . , D − 1 with s ≤ t. Let Ki,i+1 = Ki for i = 1, ..., D − 1 and define

~K1 =


K1

K1 +K2

...

K1 +K2 + ...+KD−1


(D−1)×1

(A.3)

Then, for k = 2, ..., D, it can be shown that

~Kk = ~K(k−1) −K(k−1)~1−K(k−1)~e(k−1) (A.4)

where ~1 = (1, 1, ...., 1)′ and ~ek−1 = (0, ..., 0, 1, 0, ..., 0)′ with 1 in the (k − 1)-th position and 0

elsewhere. Now, for any (D − 1)× 1 vector ~K, define

Φ̃(~K; ~µ,Σ) =

∫ ∞
~K

φ(~x; ~µ,Σ)d~x, (A.5)

where φ is the (D−1)-dimensional multivariate normal density and
∫∞
~K

is a multiple integral.
Then, we can conclude from (A.1) that for large l

PCC(∞) =
D∑
k=1

πkP (~Yl,k > ~Kk| ~X ∈ Ck)

≈
D∑
k=1

πkΦ̃(~Kk; ~µl,k,Σl,k),

=
D∑
k=1

πk

∫ ∞
~Kk

φ(~x; ~µl,k,Σl,k)d~x (A.6)

which establishes equation (4) of the main article.
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Appendix 2: Wald test and its power function

Here, we derive a Wald test for testing Hk,k′

0,j : θk,j = θk′,j versus Hk,k′

1,j : θk,j 6= θk′,j for each
j. For notational convenience, we let k = 1 and k′ = 2, and θ1,j = θ1 and θ2,j = θ2 for
the derivations below. For each Xj satisfying Assumption 2 stated in the Methods section
of the main article, let n1k =

∑nk
j=1 I{xj=0}, n2k =

∑nk
j=1 I{xj=1} and n3k =

∑nk
j=1 I{xj=2} with∑3

i=1 nik = nk for k = 1, 2. Then, by Assumption 2 and the independence of the two classes,
the likelihood function for a sample of size nk from each class is:

L(θ1, θ2) =
2∏

k=1

[(1− θk)2]n1k [2θk(1− θk)]n2k [θ2k]
n3k .

Maximizing the log-likelihood, logL(θ1, θ2), with respect to (θ1, θ2), it can be shown that the
maximum likelihood estimator (MLE) of θ1 and θ2 are, respectively:

θ̂1 =
n21 + 2n31

2n1

and θ̂2 =
n22 + 2n32

2n2

. (A.7)

Also, the Fisher information matrix at (θ1, θ2) for nk = 1 is I(θ1, θ2) =

(
2

θ1(1−θ1)
0

0 2
θ2(1−θ2)

)
. Let

2n = n1 +n2. Then, by the asymptotic normality of the MLE, it follows that
√
n(θ̂1− θ1, θ̂2−

θ2)
′ d→ N2(0, I

−1(θ1, θ2)). Now, since g(θ1, θ2) = θ1 − θ2 is differentiable at (θ1, θ2), it follows
from the delta method that

√
n[g(θ̂1, θ̂2)−g(θ1, θ2)]

d→ N(0, θ1(1−θ1)+θ2(1−θ2)
2

). Therefore, under
H0 : θ1 = θ2, the Wald test statistic

Q2 =
2n(θ̂1 − θ̂2)2

θ̂1(1− θ̂1) + θ̂2(1− θ̂2)
d→ χ2

1 as n→∞, (A.8)

where χ2
1 has chi-square distribution with 1 degree of freedom. However, under Ha : θ1 6= θ2,

say θ1 − θ2 = h, it follows from the above arguments that Q2
d→ χ2

1(λ
2), where χ2

1(λ
2) has

non-central chi-square distribution with the non-centrality parameter, λ2 = 2nh2/[θ1(1−θ1)+

(θ1 − h)(1− θ1 + h)]. Therefore, the power of the Wald test (when θ1 − θ2 = h 6= 0) is:

1− β(n1, n2, h) ≈ P

(
χ2
1(λ

2) > χ2
1,(1−α)

)
,

where χ2
1,(1−α) is the (1−α) percentile of χ2

1. For ease of presentation, we had suppressed the
subscript j. For each j = 1, . . . ,m, the power of the Wald test for H0 : θk,j = θk′,j versus
H1 : θk,j 6= θk′,j at θk,j = θk′,j + hj is denoted by 1 − βk,k

′

j (nk, nk′ , hj). Note that the power,
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1−βk,k
′

j (nk, nk′ , hj), of the test is determined using a non-central Chi-square distribution with
a non-centrality parameter, which depends on nk + nk′ and hj.

Appendix 3: Approximation for PCC(~n)

To obtain an approximation for PCC(~n), we adopt the same approach as in Appendix 1. For
the linear classifier given in (5) of the main article, consider the (D − 1) × 1 vector ~̃Yn,m,k

with components Ỹn,m,k(k′) =
∑m

j=1 b̂
j
k,k′wj,n(k, k′)xj, for k′ 6= k. Then, using the assump-

tions made in the Methods section of the main article and that (b̂jk,k′ − b
j
k,k′) = O(n−1/2), it

is shown below that the mean, E( ~̃Yn,m,k) = ~̃µm,k, is a (D − 1) × 1 vector with components
~̃µm,k(k

′) ≈
∑m

j=1 2θk,jb
j
k,k′ η̃

k,k′

j . In addition, we also compute below an approximate expression

for the (D − 1)× (D − 1) Covariance matrix of ~̃Yn,m,k, denoted by Σ̃m,k.

First, note from the calculations carried out in Appendix 2 that

P (Reject Hk,k′

0,j ) = P (Reject Hk,k′

0,j |H
k,k′

0,j )P (Hk,k′

0,j )

+P (Reject Hk,k′

0,j |H
k,k′

1,j )P (Hk,k′

1,j )

= [ρ{1− βk,k
′

j (nk, nk′ , h)}+ (1− ρ)α] = η̃k,k
′

j , (A.9)

where ρ is from Assumption 3 of the main article and η̃k,k
′

j depends on (nk, nk′). Therefore,
from the definition of wj,n(k, k′) in the linear classifier,

E(wj,n(k, k′)) = E((wj,n(k, k′))2) = P (Reject Hk,k′

0,j ) = η̃k,k
′

j .

From these, it can be shown that

E(b̂jk,k′wj,n(k, k′)xj) = E{E(b̂jk,k′wj,n(k, k′)xj)|wj,n(k, k′)}

≈ E(2θk,j b̂
j
k,k′wj,n(k, k′))

≈ 2θk,jb
j
k,k′ η̃

k,k′

j
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and

Cov(wj,n(k, k′)b̂jk,k′xj, wj,n(k, k′′)b̂jk,k′xj)

= E(x2jwj,n(k, k′)wj,n(k, k′′)b̂jk,k′ b̂
j
k,k′′)− E(wj,n(k, k′)b̂jk,k′xj)E(wj,n(k, k′′)b̂jk,k′′xj)

= E{E[x2j b̂
j
k,k′ b̂

j
k,k′′wj,n(k, k′)wj,n(k, k′′)|wj,n(k, k′)wj,n(k, k′′)]} − E(wj,n(k, k′)b̂jk,k′xj)E(wj,n(k, k′′)b̂jk,k′′xj)

= E{wj,n(k, k′)b̂jk,k′ b̂
j
k,k′wj,n(k, k′′)[2θk,j(1− θk,j) + 4θ2k,j]} − E(wj,n(k, k′)b̂jk,k′xj)E(wj,n(k, k′′)b̂jk,k′′xj)

≈

(bjk,k′)
2[2θk,j(1− θk,j)η̃k,k

′

j + 4θ2k,j η̃
k,k′

j (1− η̃k,k
′

j )], if k′ = k′′

[2θk,j(1− θk,j) + 4θ2k,j]b
j
k,k′b

j
k,k′′E(wj,n(k, k′)wj,n(k, k′′))− (2θk,jb

j
k,k′ η̃

k,k′

j )(2θk,jb
j
k,k′′ η̃

k,k′′

j ), if k′ 6= k′′.

(A.10)

Now, we give an approximation for E(wj,n(k, k′)wj,n(k, k′′)) in (A.10). First, note using the
results in Appendix 2 that

√
2n(θ̂i,j − θi,j) ⇒ N(0, θi,j(1 − θi,j)) where i = k, k′, k′′ and√

2n(θ̂k,j − θ̂s,j − θk,j + θs,j) ⇒ N(0, θk,j(1 − θk,j) + θs,j(1 − θs,j)), where s = k′, k′′. Now

define T1 ,
√
2n(θ̂k,j−θ̂k′,j)√

θk,j(1−θk,j)+θk′,j(1−θk′,j)
and T2 ,

√
2n(θ̂k,j−θ̂k′′,j)√

θk,j(1−θk,j)+θk′′,j(1−θk′′,j)
. Then from (A.8), we

have Q2(θk,j, θk′,j) , T 2
1 and Q2(θk,j, θk′′,j) , T 2

2 and recall that Hk,k′

0,j : θk,j = θk′,j and
Hk,k′′

0,j : θk,j = θk′′,j. From these, we have

E(wj,n(k, k′)wj,n(k, k′′))

= P (reject Hk,k′

0,j ∩ reject Hk,k′′

0,j )

= P ({Q2(θk,j, θk′,j) > χ2
1−α(1)} ∩ {Q2(θk,j, θk′′,j) > χ2

1−α(1)})

= P (|T1| >
√
χ2
1−α(1) ∩ |T2| >

√
χ2
1−α(1)).

For k, k′, k′′, we can mimic the arguments leading to (A.7) and (A.8), and show that (T1, T2)

is asymptotically multivariate normal. Note that the means, variances, and covariances of T1
and T2 are given by:

E(T1) =

√
2n(θk,j − θk′,j)√

θk,j(1− θk,j) + θk′,j(1− θk′,j)

E(T2) =

√
2n(θk,j − θk′′,j)√

θk,j(1− θk,j) + θk′′,j(1− θk′′,j)

V ar(T1) = V ar(T2) = 1
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Cov(T1, T2) =
θk,j(1− θk,j)√

[θk,j(1− θk,j) + θk′,j(1− θk′,j)][θk,j(1− θk,j) + θk′′,j(1− θk′′,j)]
.

Returning to the approximation of PCC(~n), assume for simplicity that K̃k,k′ in (5) of the main
article also satisfies the same properties as Kk,k′ in (A.3) and (A.4); that is, K̃k′,k′′ = −K̃k′′,k′

and
∑t

k=s K̃k,(k+1) = K̃s,t+1 for any s, t = 1, . . . , D − 1 with s ≤ t. Let K̃i,i+1 = K̃i for

i = 1, ..., D − 1, and define ~̃K1 and ~̃Kk as in (A.3) and (A.4), respectively. Then, once again,
as in (A.1), for large m we can show that ~̃Yn,m,k ≈ N(~̃µm,k, Σ̃m,k).

Then, as in (A.5) and (A.6), the PCC of the linear classifier is:

PCC(~n) =
D∑
k=1

πkP ( ~̃Yn,m,k > ~̃Kk| ~X ∈ Ck)

≈
D∑
k=1

πkΦ̃( ~̃Kk; ~̃µm,k, Σ̃m,k)

=
D∑
k=1

πk

∫ ∞
~̃Kk

φ(~x; ~̃µl,k, Σ̃l,k)d~x (A.11)

Note that PCC(~n) depends on ~n = (n1, . . . , nD)′ through (~̃µm,k, Σ̃m,k), which depend on
{η̃k,k

′

j ; k, k′ = 1, . . . , D}.

Appendix 4: PCC and VUS expressions for three classes

Here, we assume that D = 3 and obtain an expression for PCC(∞), PCC(~n) and V US(∞).

Calculation of PCC(∞):

PCC(∞) = π1P (
l∑

j=1

xjb
j
1,2 > K1,2,

l∑
j=1

xjb
j
1,3 > K1,3) + π2P (

l∑
j=1

xjb
j
2,1 > K2,1,

l∑
j=1

xjb
j
2,3 > K2,3)

+ π3P (
l∑

j=1

xjb
j
3,1 > K3,1,

l∑
j=1

xjb
j
3,2 > K3,2).
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Let

K1 , K1,2 = −K2,1

K2 , K2,3 = −K3,2

K1,3 = K1 +K2

K3,1 = −(K1 +K2).

Then, rewrite PCC(∞) as

PCC(∞) = π1P (
l∑

j=1

xjb
j
1,2 > K1,

l∑
j=1

xjb
j
1,3 > (K1 +K2)) + π2P (

l∑
j=1

xjb
j
2,1 > −K1,

l∑
j=1

xjb
j
2,3 > K2)

+ π3P (
l∑

j=1

xjb
j
3,1 > −(K1 +K2),

l∑
j=1

xjb
j
3,2 > −K2)

≈ π1Φ̃((K1, K1 +K2)
′; ~µl,1,Σl,1) + π2Φ̃((−K1, K2)

′; ~µl,2,Σl,2)

+ π3Φ̃((−(K1 +K2),−K2)
′; ~µl,3,Σl,3), (A.12)

where

~µl,1 =

(∑l
j=1 2θ1,jb

j
1,2∑l

j=1 2θ1,jb
j
1,3

)

~µl,2 =

(∑l
j=1 2θ2,jb

j
2,1∑l

j=1 2θ2,jb
j
2,3

)

~µl,3 =

(∑l
j=1 2θ3,jb

j
3,1∑l

j=1 2θ3,jb
j
3,2

)

Σl,1 ,

(∑l
j=1 2(bj1,2)

2θ1,j(1− θ1,j)
∑l

j=1 2bj1,2b
j
1,3θ1,j(1− θ1,j)∑l

j=1 2bj1,3b
j
1,2θ1,j(1− θ1,j)

∑l
j=1 2(bj1,3)

2θ1,j(1− θ1,j)

)

Σl,2 ,

(∑l
j=1 2(bj2,1)

2θ2,j(1− θ2,j)
∑l

j=1 2bj2,1b
j
2,3θ2,j(1− θ2,j)∑l

j=1 2bj2,3b
j
2,1θ2,j(1− θ2,j)

∑l
j=1 2(bj2,3)

2θ2,j(1− θ2,j)

)
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Σl,3 ,

(∑l
j=1 2(bj3,1)

2θ3,j(1− θ3,j)
∑l

j=1 2bj3,1b
j
3,2θ3,j(1− θ3,j)∑l

j=1 2bj3,1b
j
3,2θ3,j(1− θ3,j)

∑l
j=1 2(bj3,2)

2θ3,j(1− θ3,j)

)
.

Calculation of PCC(~n):

Note from (5) of the main article that

~X ∈ C1 if {
m∑
j=1

b̂j1,2wj,n(1, 2)xj > K̃1} & {
m∑
j=1

b̂j1,3wj,n(1, 3)xj > K̃1 + K̃2},

~X ∈ C2 if {
m∑
j=1

b̂j2,1wj,n(2, 1)xj > −K̃1} & {
m∑
j=1

b̂j2,3wj,n(2, 3)xj > K̃2},

~X ∈ C3 if {
m∑
j=1

b̂j3,1wj,n(3, 1)xj > −(K̃1 + K̃2)} & {
m∑
j=1

b̂j3,2wj,n(3, 2)xj > −K̃2}.

Therefore,

PCC(~n) = π1P (
m∑
j=1

b̂j1,2wj,n(1, 2)xj > K̃1,
m∑
j=1

b̂j1,3wj,n(1, 3)xj > K̃1 + K̃2)

+ π2P (
m∑
j=1

b̂j2,1wj,n(2, 1)xj > −K̃1,
m∑
j=1

b̂j2,3wj,n(2, 3)xj > K̃2)

+ π3P (
m∑
j=1

b̂j3,1wj,n(3, 1)xj > −(K̃1 + K̃2),
m∑
j=1

b̂j3,2wj,n(3, 2)xj > −K̃2)

≈ π1Φ̃((K̃1, K̃1 + K̃2)
′; ~̃µl,1, Σ̃l,1) + π2Φ̃((−K̃1, K̃2)

′; ~̃µl,2, Σ̃l,2)

+ π3Φ̃((−(K̃1 + K̃2),−K̃2)
′; ~̃µl,3, Σ̃l,3),

where

~̃µl,1 =

(
2
∑m

j=1 θ1,j η̃
1,2
j

2
∑m

j=1 θ1,j η̃
1,3
j

)
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~̃µl,2 =

(
2
∑m

j=1 θ2,j η̃
2,1
j

2
∑m

j=1 θ2,j η̃
2,3
j

)

~̃µl,3 =

(
2
∑m

j=1 θ3,j η̃
3,1
j

2
∑m

j=1 θ3,j η̃
3,2
j

)
,

and the 2× 2 variance-covariance matrices (written in a vector form due to the length of each
expression) are given by:

Σ̃l,1 =


∑m

j=1(b
j
1,2)

2[2θ1,j(1− θ1,j)η̃1,2j + 4θ21,2η̃
1,2
j (1− η̃1,2j )]∑m

j=1[2θ1,j(1− θ1,j) + 4θ21,j]b
j
1,2b

j
1,3E(wj,n(1, 2)wj,n(1, 3))−

∑m
j=1 4θ21,jb

j
1,2b

j
1,3η̃

1,2
j η̃1,3j ]∑m

j=1[2θ1,j(1− θ1,j) + 4θ21,j]b
j
1,2b

j
1,3E(wj,n(1, 2)wj,n(1, 3))−

∑m
j=1 4θ21,jb

j
1,2b

j
1,3η̃

1,2
j η̃1,3j ]∑m

j=1(b
j
1,3)

2[2θ1,j(1− θ1,j)η̃1,3j + 4θ21,3η̃
1,3
j (1− η̃1,3j )]



Σ̃l,2 =


∑m

j=1(b
j
2,1)

2[2θ2,j(1− θ2,j)η̃2,1j + 4θ22,1η̃
2,1
j (1− η̃2,1j )]∑m

j=1[2θ2,j(1− θ2,j) + 4θ22,j]b
j
2,1b

j
2,3E(wj,n(2, 1)wj,n(2, 3))−

∑m
j=1 4θ22,jb

j
2,1b

j
2,3η̃

2,1
j η̃2,3j ]∑m

j=1[2θ2,j(1− θ2,j) + 4θ22,j]b
j
2,2b

j
2,3E(wj,n(2, 1)wj,n(2, 3))−

∑m
j=1 4θ22,jb

j
2,1b

j
2,3η̃

2,1
j η̃2,3j ]∑m

j=1(b
j
2,3)

2[2θ2,j(1− θ2,j)η̃2,3j + 4θ22,3η̃
2,3
j (1− η̃2,3j )]



Σ̃l,3 =


∑m

j=1(b
j
3,1)

2[2θ3,j(1− θ3,j)η̃3,2j + 4θ23,j η̃
3,2
j (1− η̃3,2j )]∑m

j=1[2θ3,j(1− θ3,j) + 4θ23,j]b
j
3,1b

j
3,2E(wj,n(3, 1)wj,n(3, 2))−

∑m
j=1 4θ23,jb

j
3,1b

j
3,2η̃

3,1
j η̃3,2j ]∑m

j=1[2θ3,j(1− θ3,j) + 4θ23,j]b
j
3,1b

j
3,2E(wj,n(3, 1)wj,n(3, 2))−

∑m
j=1 4θ23,jb

j
3,1b

j
3,2η̃

3,1
j η̃3,2j ]∑m

j=1(b
j
3,2)

2[2θ3,j(1− θ3,j)η̃3,1j + 4θ23,j η̃
3,2
j (1− η̃3,2j )]

 .

Calculation of V US(∞) and V US(~n):

If we denote N2(x1, x2; ~µ,Σ) as the two-dimensional normal density function with mean ~µ

and variance-covariance matrix Σ, then from (A.12) and (7) of the main article, the right side
of PCC(∞) involves

9



ξ1,1 =

∫ ∞
K1

∫ ∞
K1+K2

N2(x1, x2; ~µl,1,Σl,1)dx1dx2

ξ2,2 =

∫ ∞
−K1

∫ ∞
K2

N2(x1, x2; ~µl,2,Σl,2)dx1dx2

ξ3,3 =

∫ ∞
−K1−K2

∫ ∞
−K2

N2(x1, x2; ~µl,3,Σl,3)dx1dx2.

Then, from (9) of the main article we have

V US(∞) =

∫ 1

0

∫ 1

0

ξ1,1(K1, K2)dξ2,2(K1, K2)dξ3,3(K1, K2).

Similarly, we can derive expressions for V US(~n).

Appendix 5: Monte Carlo Simulations using AUC

To compare the performance of our linear classifier with another classifier in the literature,
such as the SVM, we also computed the AUC(n) values corresponding to the SVM for the
same simulation setup as the one described in Table 1 of Liu et al. (2012). For ROC and
AUC calculations, we consider the special case, ~θ1 = (θ1, . . . , θ1)

′ and ~θ2 = (θ2, . . . , θ2)
′ with

θ1 > θ2. These are given in Figure 1 below. Note that, unlike our linear classifier, there is
no approximate formula available to calculate the AUC(n) for SVM. Therefore, we cannot
compare AUC(n) values for our linear classifier (or the AUC(∞) values) with AUC(n) values
for SVM. Figure 1 shows that the ROC_MC values are essentially same as those for the ROC
for the SVM_MC. This says that our linear classifier is as good as or slightly better than the
SVM. Table 1 compares the approximate values of AUC(n), denoted by ˆAUC(n), with the
Monte Carlo based estimates, ˆAUC(n)MC, for various specifications. To obtain ˆAUC(n)MC
values, for each specification in Table 1, we simulated a training data and a testing data of
SNPs, each having the same sample sizes. The training data was used to build the linear
classifier, while the testing data was used to determine the frequency of correct classification
of the linear classifier. This process was repeated 200 times in order to compute the average
correct classification frequency, ˆAUC(n)MC, given in Table 1. It is evident from Table 1 that
the ˆBias = ˆAUC(n)MC − ˆAUC(n) is negligible in most cases, thereby validating the use of
our approximation for AUC(n). Also note that both ˆAUC(n)MC and ˆAUC(n) are close to

ˆAUC(∞), approximate values of AUC(∞).

10
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Figure 1: ROC curve for optimal classification, linear classification, Monte Carlo simulation
and SVM, the shade is the ROC curve for each simulation. α = 0.1, ρ = 1
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Table 1: Performance of Optimal and Linear classifiers: The values of ˆAUC(n) and
ˆAUC(n)MC are close to each other for various model specifications. Here, θ1 = 0.3, h = θ1−θ2,

Size = 2n (n for C1, n for C2), m is the number of independent SNPs, α = 0.01 is the signif-
icant level for Wald tests in Section 2.3, and ρ = 1 is the percentage of the significant SNPs.

h m Size ˆAUC(∞) ˆAUC(n) ˆAUC(n)MC ˆBias
0.01 10 60 0.5276 0.5021 0.5032 0.0011
0.01 10 200 0.5276 0.5022 0.5022 0
0.01 10 400 0.5276 0.5024 0.5016 -0.0008
0.01 50 60 0.5616 0.5047 0.5183 0.0136
0.01 50 200 0.5616 0.505 0.5111 0.0061
0.01 50 400 0.5616 0.5054 0.5079 0.0025
0.01 200 60 0.6218 0.5094 0.5373 0.0279
0.01 200 200 0.6218 0.5099 0.5217 0.0118
0.01 200 400 0.6218 0.5107 0.5169 0.0062
0.05 10 60 0.6386 0.5171 0.5122 -0.0049
0.05 10 200 0.6386 0.5292 0.5288 -0.0004
0.05 10 400 0.6386 0.5442 0.5439 -0.0003
0.05 50 60 0.7861 0.5382 0.5426 0.0044
0.05 50 200 0.7861 0.565 0.5752 0.0102
0.05 50 400 0.7861 0.5979 0.6197 0.0218
0.05 200 60 0.9436 0.5761 0.5864 0.0103
0.05 200 200 0.9436 0.6283 0.6585 0.0302
0.05 200 400 0.9436 0.6901 0.7367 0.0466
0.2 10 60 0.9488 0.8594 0.8746 0.0152
0.2 10 200 0.9488 0.9471 0.9452 -0.0019
0.2 10 400 0.9488 0.9488 0.9464 -0.0024
0.2 50 60 0.9999 0.992 0.9944 0.0024
0.2 50 200 0.9999 0.9999 0.9999 0
0.2 50 400 0.9999 0.9999 0.9999 0
0.2 200 60 1 1 1 0
0.2 200 200 1 1 1 0
0.2 200 400 1 1 1 0
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